Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310911

RESUMO

Sensory perception modulates aging, yet we know little about how. An understanding of the neuronal mechanisms through which animals orchestrate biological responses to relevant sensory inputs would provide insight into the control systems that may be important for modulating lifespan. Here, we provide new awareness into how the perception of dead conspecifics, or death perception, which elicits behavioral and physiological effects in many different species, affects lifespan in the fruit fly, Drosophila melanogaster. Previous work demonstrated that cohousing Drosophila with dead conspecifics decreases fat stores, reduces starvation resistance, and accelerates aging in a manner that requires both sight and the serotonin receptor 5-HT2A. In this manuscript, we demonstrate that a discrete, 5-HT2A-expressing neural population in the ellipsoid body (EB) of the Drosophila central complex, identified as R2/R4 neurons, acts as a rheostat and plays an important role in transducing sensory information about the presence of dead individuals to modulate lifespan. Expression of the insulin-responsive transcription factor foxo in R2/R4 neurons and insulin-like peptides dilp3 and dilp5, but not dilp2, are required, with the latter likely altered in median neurosecretory cells (MNCs) after R2/R4 neuronal activation. These data generate new insights into the neural underpinnings of how perceptive events may impact aging and physiology across taxa.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Envelhecimento , Neurônios , Insulina
2.
Front Aging ; 3: 1068455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531741

RESUMO

The conserved neurotransmitter serotonin has been shown to be an important modulator of lifespan in specific nutritional contexts; however, it remained unclear how serotonin signaling influences lifespan under normal conditions. Here, we show that serotonin signaling through the 5-HT2A receptor influences lifespan, behavior, and physiology in Drosophila. Loss of the 5-HT2A receptor extends lifespan and induces a resistance to changes in dietary protein that are normally detrimental to lifespan. 5-HT2A -/- null mutant flies also display decreased protein feeding and protein content in the body. Therefore, serotonin signaling through receptor 5-HT2A is likely recruited to promote motivation for protein intake, and chronic reduction of protein-drive through loss of 5-HT2A signaling leads to a lower protein set-point adaptation, which influences physiology, decreases feeding, and increases lifespan. Our findings reveal insights into the mechanisms by which organisms physiologically adapt in response to perceived inability to satisfy demand.

3.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980491

RESUMO

Organisms make decisions based on the information they gather from their environment, the effects of which affect their fitness. Understanding how these interactions affect physiology may generate interventions that improve the length and quality of life. Here, we provide evidence that exposure to live yeast volatiles during starvation significantly extends survival, increases activity, and slows the rate of triacylglyceride (TAG) decline independent of canonical sensory perception. We demonstrate that ethanol (EtOH) is one of the active components in yeast volatiles that influences these phenotypes and that EtOH metabolites mediate dynamic mechanisms to promote Drosophila survival. Silencing R4d neurons reverses the ability of high EtOH concentrations to promote starvation survival, and their activation promotes EtOH metabolism. The transcription factor foxo promotes EtOH resistance, likely by protection from EtOH toxicity. Our results suggest that food-related cues recruit neural circuits and modulate stress signaling pathways to promote survival during starvation.


Assuntos
Proteínas de Drosophila , Inanição , Animais , Drosophila , Proteínas de Drosophila/genética , Etanol , Qualidade de Vida , Saccharomyces cerevisiae
4.
Sci Adv ; 6(40)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33008901

RESUMO

Aging is the dominant risk factor for most chronic diseases. Development of antiaging interventions offers the promise of preventing many such illnesses simultaneously. Cellular stress resistance is an evolutionarily conserved feature of longevity. Here, we identify compounds that induced resistance to the superoxide generator paraquat (PQ), the heavy metal cadmium (Cd), and the DNA alkylator methyl methanesulfonate (MMS). Some rescue compounds conferred resistance to a single stressor, while others provoked multiplex resistance. Induction of stress resistance in fibroblasts was predictive of longevity extension in a published large-scale longevity screen in Caenorhabditis elegans, although not in testing performed in worms and flies with a more restricted set of compounds. Transcriptomic analysis and genetic studies implicated Nrf2/SKN-1 signaling in stress resistance provided by two protective compounds, cardamonin and AEG 3482. Small molecules identified in this work may represent attractive tools to elucidate mechanisms of stress resistance in mammalian cells.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Longevidade/genética , Mamíferos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
5.
Annu Rev Physiol ; 82: 227-249, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31635526

RESUMO

Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Percepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Sinais (Psicologia) , Humanos , Transdução de Sinais/fisiologia
6.
Nat Commun ; 10(1): 2365, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147540

RESUMO

Sensory perception modulates health and aging across taxa. Understanding the nature of relevant cues and the mechanisms underlying their action may lead to novel interventions that improve the length and quality of life. We found that in the vinegar fly, Drosophila melanogaster, exposure to dead conspecifics in the environment induced cues that were aversive to other flies, modulated physiology, and impaired longevity. The effects of exposure to dead conspecifics on aversiveness and lifespan required visual and olfactory function in the exposed flies. Furthermore, the sight of dead flies was sufficient to produce aversive cues and to induce changes in the head metabolome. Genetic and pharmacologic attenuation of serotonergic signaling eliminated the effects of exposure on aversiveness and lifespan. Our results indicate that Drosophila have an ability to perceive dead conspecifics in their environment and suggest conserved mechanistic links between neural state, health, and aging; the roots of which might be unearthed using invertebrate model systems.


Assuntos
Sinais (Psicologia) , Morte , Longevidade , Percepção Olfatória , Serotonina/metabolismo , Percepção Visual , Animais , Dióxido de Carbono/metabolismo , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Drosophila simulans , Metaboloma , Fosfolipase C beta/genética , Receptores Odorantes/genética , Transdução de Sinais , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...